Crucial factors for the feasibility of commercial hybrid breeding in food crops

  • Labroo, M. R., Studer, A. J. & Rutkoski, J. E. Heterosis and hybrid crop breeding: a multidisciplinary review. Front. Genet. 12, 643761 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mackay, I. J., Cockram, J., Howell, P. & Powell, W. Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 19, 26–34 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Béné, C. et al. Understanding food systems drivers: a critical review of the literature. Glob. Food Sec. 23, 149–159 (2019).

    Article 

    Google Scholar
     

  • Clapp, J. Food 3rd edn (Polity, 2020).

  • Lammerts van Bueren, E. T., Struik, P. C., van Eekeren, N. & Nuijten, E. Towards resilience through systems-based plant breeding: a review. Agron. Sustain. Dev. 38, 42 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kantar, M. B. et al. The many‐faced Janus of plant breeding. Plants People Planet 1, 306–309 (2019).

    Article 

    Google Scholar
     

  • Lammerts van Bueren, E. T. et al. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: a review. NJAS 58, 193–205 (2011).


    Google Scholar
     

  • Chahal, G. S. & Gosal, S. S. Principles and Procedures of Plant Breeding: Biotechnological and Conventional Approaches (Alpha Science International, 2002).

  • Brown, J. & Caligari, P. D. S. An Introduction to Plant Breeding (Blackwell, 2008).

  • Rijk, B., van Ittersum, M. & Withagen, J. Genetic progress in Dutch crop yields. Field Crops Res. 149, 262–268 (2013).

    Article 

    Google Scholar
     

  • Rudolf-Pilih, K. et al. Proposal of a new hybrid breeding method based on genotyping, inter-pollination, phenotyping and paternity testing of selected elite F1 hybrids. Front. Plant Sci. 10, 1111 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lindhout, P. et al. Towards F1 hybrid seed potato breeding. Potato Res. 54, 301–312 (2011).

    Article 

    Google Scholar
     

  • Bélanger, J. & Pilling, D. The State of the World’s Biodiversity for Food and Agriculture (FAO, 2019).

  • Priyadarshan, P. M. Plant Breeding: Classical to Modern (Springer, 2019).

  • World Food and Agriculture Statistical Pocketbook 2019 (FAO, 2019).

  • Acquaah, G. Principles of Plant Genetics and Breeding 3rd edn (Wiley, 2020).

  • Sterck, L., Rombauts, S., Vandepoele, K., Rouze, P. & Vandepeer, Y. How many genes are there in plants (…and why are they there)? Curr. Opin. Plant Biol. 10, 199–203 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crouch, D. J. M. & Bodmer, W. F. Polygenic inheritance, GWAS, polygenic risk scores, and the search for functional variants. Proc. Natl Acad. Sci. USA 117, 18924–18933 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bernardo, R. Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something BLUE. Heredity 125, 375–385 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao, Y. et al. Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat. Sci. Adv. 7, eabf9106 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barrett, S. C. H. Mating strategies in flowering plants: the outcrossing–selfing paradigm and beyond. Phil. Trans. R. Soc. Lond. B 358, 991–1004 (2003).

    Article 

    Google Scholar
     

  • Charlesworth, D., Vekemans, X., Castric, V. & Glémin, S. Plant self‐incompatibility systems: a molecular evolutionary perspective. N. Phytol. 168, 61–69 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Whitehead, M. R., Lanfear, R., Mitchell, R. J. & Karron, J. D. Plant mating systems often vary widely among populations. Front. Ecol. Evol. 6, 38 (2018).

    Article 

    Google Scholar
     

  • Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24–40 (1985).

    PubMed 

    Google Scholar
     

  • Porcher, E. & Lande, R. The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation: pollination biology and evolution of selfing. J. Evol. Biol. 18, 497–508 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Husband, B. C. & Schemske, D. W. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50, 54–70 (1996).

    PubMed 
    Article 

    Google Scholar
     

  • Harlan, J. R. & Wet, J. M. J. Toward a rational classification of cultivated plants. TAXON 20, 509–517 (1971).

    Article 

    Google Scholar
     

  • Palmer, R. G. & Hymowitz, T. in Reference Module in Food Science B9780081005965002146 (Elsevier, 2016).

  • Tourrette, E., Falque, M. & Martin, O. C. Enhancing backcross programs through increased recombination. Genet. Sel. Evol. 53, 25 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brock, R. D. The role of induced mutations in plant improvement. Radiat. Bot. 11, 181–196 (1971).

    CAS 
    Article 

    Google Scholar
     

  • Ahloowalia, B. S., Maluszynski, M. & Nichterlein, K. Global impact of mutation-derived varieties. Euphytica 135, 187–204 (2004).

    Article 

    Google Scholar
     

  • Louwaars, N. Seeds of Confusion: The Impact of Policies on Seed Systems (Wageningen University and Research, 2007).

  • Jamali, S. H., Cockram, J. & Hickey, L. T. Is plant variety registration keeping pace with speed breeding techniques? Euphytica 216, 131 (2020).

    Article 

    Google Scholar
     

  • De Jonge, B., Salazar, R. & Visser, B. How regulatory issues surrounding new breeding technologies can impact smallholder farmer breeding: a case study from the Philippines. Plants People Planet 4, 96–105 (2022).

    Article 

    Google Scholar
     

  • Almekinders, C. J. M., Hebinck, P., Marinus, W., Kiaka, R. D. & Waswa, W. W. Why farmers use so many different maize varieties in West Kenya. Outlook Agric. 50, 406–417 (2021).

    Article 

    Google Scholar
     

  • Kaeppler, S. Heterosis: many genes, many mechanisms—end the search for an undiscovered unifying theory. ISRN Bot. 2012, 682824 (2012).


    Google Scholar
     

  • Virmani, S. S., Sun, Z. X., Mou, T. M., Ali, A. J. & Mao, C. X. Two-Line Hybrid Rice Breeding Manual (International Rice Research Institute, 2003).

  • Lindhout, P. et al. in Burleigh Dodds Series in Agricultural Science: Achieving Sustainable Cultivation of Potatoes (ed. Wang-Pruski, G.) 99–122 (Burleigh Dodds Science, 2018).

  • Nienhuis, J. & Sills, G. in Reproductive Biology and Plant Breeding (eds Dattée, Y. et al.) 387–396 (Springer Berlin Heidelberg, 1992).

  • Singh, S. & Gupta, S. K. Formation of heterotic pools and understanding relationship between molecular divergence and heterosis in pearl millet [Pennisetum glaucum (L.) R. Br.]. PLoS ONE 14, e0207463 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allard, R. W. History of plant population genetics. Annu. Rev. Genet. 33, 1–27 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gupta, P. K. et al. Hybrid wheat: past, present and future. Theor. Appl. Genet. 132, 2463–2483 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Xiao, Z. et al. Overcoming cabbage crossing incompatibility by the development and application of self-compatibility-QTL-specific markers and genome-wide background analysis. Front. Plant Sci. 10, 189 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, L. & Liu, Y.-G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65, 579–606 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peet, M. M. & Welles, G. in Tomatoes (ed. Heuvelink, E.) 257–304 (CABI, 2005).

  • Erenstein, O. & Kassie, G. T. Seeding eastern Africa’s maize revolution in the post-structural adjustment era: a review and comparative analysis of the formal maize seed sector. Int. Food Agribus. Manage. Rev. 21, 39–52 (2018).

    Article 

    Google Scholar
     

  • Crow, J. Anecdotal, historical and critical commentaries on genetics. Genetics 148, 923–928 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Duvick, D. N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).

    Article 

    Google Scholar
     

  • Andorf, C. et al. Technological advances in maize breeding: past, present and future. Theor. Appl. Genet. 132, 817–849 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Troyer, A. F. Adaptedness and heterosis in corn and mule hybrids. Crop Sci. 46, 528–543 (2006).

    Article 

    Google Scholar
     

  • Longin, C. F. H., Reif, J. C. & Würschum, T. Long-term perspective of hybrid versus line breeding in wheat based on quantitative genetic theory. Theor. Appl. Genet. 127, 1635–1641 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Jiang, Y., Schmidt, R. H., Zhao, Y. & Reif, J. C. A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat. Genet. 49, 1741–1746 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Voss-Fels, K. P. et al. Breeding improves wheat productivity under contrasting agrochemical input levels. Nat. Plants 5, 706–714 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Boeven, P. H. G., Würschum, T., Rudloff, J., Ebmeyer, E. & Longin, C. F. H. Hybrid seed set in wheat is a complex trait but can be improved indirectly by selection for male floral traits. Euphytica 214, 110 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Boeven, P. H. G., Longin, C. F. H. & Würschum, T. A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor. Appl. Genet. 129, 1231–1245 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Douches, D. S., Maas, D., Jastrzebski, K. & Chase, R. W. Assessment of potato breeding progress in the USA over the last century. Crop Sci. 36, 1544–1552 (1996).

    Article 

    Google Scholar
     

  • Jansky, S. H. et al. Reinventing potato as a diploid inbred line-based crop. Crop Sci. 56, 1412–1422 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873–3883.e3812 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su, Y. et al. Introgression of genes for resistance against Phytophthora infestans in diploid potato. Am. J. Potato Res. 97, 33–42 (2020).

    Article 

    Google Scholar
     

  • Hutten, R. C. B. Basic Aspects of Potato Breeding via the Diploid Level (Wageningen University and Research, 1994).

  • Stockem, J., de Vries, M., van Nieuwenhuizen, E., Lindhout, P. & Struik, P. C. Contribution and stability of yield components of diploid hybrid potato. Potato Res. https://doi.org/10.1007/s11540-019-09444-x (2020).

  • Steenhuijsen Piters, B. D. et al. Global Scoping Study on Fruits and Vegetables: Results from Literature and Data Analysis (Wageningen Economic Research, 2021).

  • Access to Seeds Index (Access to Seeds Foundation, 2019); https://www.accesstoseeds.org/

  • Yuan, L. P. Hybrid rice in China. Chin. J. Rice Sci. 1, 8–18 (1986).


    Google Scholar
     

  • Cheng, S. H., Zhuang, J. Y., Fan, Y. Y., Du, J. H. & Cao, L. Y. Progress in research and development on hybrid rice: a super-domesticate in China. Ann. Bot. 100, 959–966 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miedaner, T. & Laidig, F. in Advances in Plant Breeding Strategies: Cereals (eds Al-Khayri, J. M. et al.) 343–372 (Springer International, 2019).

  • McGrath, J. M. & Panella, L. in Plant Breeding Reviews (ed. Goldman, I.) 167–218 (Wiley, 2018).

  • Oliver, E. & Shoham, J. Analysis of Sales and Profitability within the Seed Sector (IHS Markit, 2019); https://cdn.ihsmarkit.com/www/pdf/0320/202001-Seedsectorsale-Analysis-LD-Unknown-Version001-pdf.pdf

  • Nielsen, R. L. Historical Corn Grain Yields in the U.S. (Purdue Univ., 2021); https://www.agry.purdue.edu/ext/corn/news/timeless/yieldtrends.html

  • Next Post

    Atlanta's 500 Most Powerful Leaders in 2022: Real Estate

    Xmetrical: Antone ResidencePhotograph by Fredrik Bauer Architecture & Design | Commercial Contractors | Commercial Real Estate Brokers | Commercial Real Estate Sponsors| Residential Real Estate Brokers | Residential Real Estate Developers | Legends ARCHITECTURE & DESIGN   Lucy Aiken-JohnsonFounding Partnerai3 As a founding partner of ai3 in 2004, Lucy Aiken-Johnson […]

    Subscribe US Now