Essential elements for the feasibility of economic hybrid breeding in meals crops

  • Labroo, M. R., Studer, A. J. & Rutkoski, J. E. Heterosis and hybrid crop breeding: a multidisciplinary assessment. Entrance. Genet. 12, 643761 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mackay, I. J., Cockram, J., Howell, P. & Powell, W. Understanding the classics: the unifying ideas of transgressive segregation, inbreeding melancholy and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 19, 26–34 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Béné, C. et al. Understanding meals methods drivers: a important assessment of the literature. Glob. Meals Sec. 23, 149–159 (2019).

    Article 

    Google Scholar
     

  • Clapp, J. Meals third edn (Polity, 2020).

  • Lammerts van Bueren, E. T., Struik, P. C., van Eekeren, N. & Nuijten, E. In direction of resilience by way of systems-based plant breeding: a assessment. Agron. Maintain. Dev. 38, 42 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kantar, M. B. et al. The various‐confronted Janus of plant breeding. Vegetation Individuals Planet 1, 306–309 (2019).

    Article 

    Google Scholar
     

  • Lammerts van Bueren, E. T. et al. The necessity to breed crop varieties appropriate for natural farming, utilizing wheat, tomato and broccoli as examples: a assessment. NJAS 58, 193–205 (2011).


    Google Scholar
     

  • Chahal, G. S. & Gosal, S. S. Ideas and Procedures of Plant Breeding: Biotechnological and Typical Approaches (Alpha Science Worldwide, 2002).

  • Brown, J. & Caligari, P. D. S. An Introduction to Plant Breeding (Blackwell, 2008).

  • Rijk, B., van Ittersum, M. & Withagen, J. Genetic progress in Dutch crop yields. Discipline Crops Res. 149, 262–268 (2013).

    Article 

    Google Scholar
     

  • Rudolf-Pilih, Okay. et al. Proposal of a brand new hybrid breeding methodology based mostly on genotyping, inter-pollination, phenotyping and paternity testing of chosen elite F1 hybrids. Entrance. Plant Sci. 10, 1111 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lindhout, P. et al. In direction of F1 hybrid seed potato breeding. Potato Res. 54, 301–312 (2011).

    Article 

    Google Scholar
     

  • Bélanger, J. & Pilling, D. The State of the World’s Biodiversity for Meals and Agriculture (FAO, 2019).

  • Priyadarshan, P. M. Plant Breeding: Classical to Trendy (Springer, 2019).

  • World Meals and Agriculture Statistical Pocketbook 2019 (FAO, 2019).

  • Acquaah, G. Ideas of Plant Genetics and Breeding third edn (Wiley, 2020).

  • Sterck, L., Rombauts, S., Vandepoele, Okay., Rouze, P. & Vandepeer, Y. What number of genes are there in vegetation (…and why are they there)? Curr. Opin. Plant Biol. 10, 199–203 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crouch, D. J. M. & Bodmer, W. F. Polygenic inheritance, GWAS, polygenic danger scores, and the seek for purposeful variants. Proc. Natl Acad. Sci. USA 117, 18924–18933 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bernardo, R. Reinventing quantitative genetics for plant breeding: one thing previous, one thing new, one thing borrowed, one thing BLUE. Heredity 125, 375–385 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhao, Y. et al. Unlocking huge information doubled the accuracy in predicting the grain yield in hybrid wheat. Sci. Adv. 7, eabf9106 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barrett, S. C. H. Mating methods in flowering vegetation: the outcrossing–selfing paradigm and past. Phil. Trans. R. Soc. Lond. B 358, 991–1004 (2003).

    Article 

    Google Scholar
     

  • Charlesworth, D., Vekemans, X., Castric, V. & Glémin, S. Plant self‐incompatibility methods: a molecular evolutionary perspective. N. Phytol. 168, 61–69 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Whitehead, M. R., Lanfear, R., Mitchell, R. J. & Karron, J. D. Plant mating methods usually differ broadly amongst populations. Entrance. Ecol. Evol. 6, 38 (2018).

    Article 

    Google Scholar
     

  • Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding melancholy in vegetation. I. Genetic fashions. Evolution 39, 24–40 (1985).

    PubMed 

    Google Scholar
     

  • Porcher, E. & Lande, R. The evolution of self-fertilization and inbreeding melancholy below pollen discounting and pollen limitation: pollination biology and evolution of selfing. J. Evol. Biol. 18, 497–508 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Husband, B. C. & Schemske, D. W. Evolution of the magnitude and timing of inbreeding melancholy in vegetation. Evolution 50, 54–70 (1996).

    PubMed 
    Article 

    Google Scholar
     

  • Harlan, J. R. & Moist, J. M. J. Towards a rational classification of cultivated vegetation. TAXON 20, 509–517 (1971).

    Article 

    Google Scholar
     

  • Palmer, R. G. & Hymowitz, T. in Reference Module in Meals Science B9780081005965002146 (Elsevier, 2016).

  • Tourrette, E., Falque, M. & Martin, O. C. Enhancing backcross packages by way of elevated recombination. Genet. Sel. Evol. 53, 25 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brock, R. D. The function of induced mutations in plant enchancment. Radiat. Bot. 11, 181–196 (1971).

    CAS 
    Article 

    Google Scholar
     

  • Ahloowalia, B. S., Maluszynski, M. & Nichterlein, Okay. World impression of mutation-derived varieties. Euphytica 135, 187–204 (2004).

    Article 

    Google Scholar
     

  • Louwaars, N. Seeds of Confusion: The Impression of Insurance policies on Seed Methods (Wageningen College and Analysis, 2007).

  • Jamali, S. H., Cockram, J. & Hickey, L. T. Is plant selection registration conserving tempo with velocity breeding methods? Euphytica 216, 131 (2020).

    Article 

    Google Scholar
     

  • De Jonge, B., Salazar, R. & Visser, B. How regulatory points surrounding new breeding applied sciences can impression smallholder farmer breeding: a case examine from the Philippines. Vegetation Individuals Planet 4, 96–105 (2022).

    Article 

    Google Scholar
     

  • Almekinders, C. J. M., Hebinck, P., Marinus, W., Kiaka, R. D. & Waswa, W. W. Why farmers use so many alternative maize varieties in West Kenya. Outlook Agric. 50, 406–417 (2021).

    Article 

    Google Scholar
     

  • Kaeppler, S. Heterosis: many genes, many mechanisms—finish the seek for an undiscovered unifying idea. ISRN Bot. 2012, 682824 (2012).


    Google Scholar
     

  • Virmani, S. S., Solar, Z. X., Mou, T. M., Ali, A. J. & Mao, C. X. Two-Line Hybrid Rice Breeding Guide (Worldwide Rice Analysis Institute, 2003).

  • Lindhout, P. et al. in Burleigh Dodds Collection in Agricultural Science: Reaching Sustainable Cultivation of Potatoes (ed. Wang-Pruski, G.) 99–122 (Burleigh Dodds Science, 2018).

  • Nienhuis, J. & Sills, G. in Reproductive Biology and Plant Breeding (eds Dattée, Y. et al.) 387–396 (Springer Berlin Heidelberg, 1992).

  • Singh, S. & Gupta, S. Okay. Formation of heterotic swimming pools and understanding relationship between molecular divergence and heterosis in pearl millet [Pennisetum glaucum (L.) R. Br.]. PLoS ONE 14, e0207463 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allard, R. W. Historical past of plant inhabitants genetics. Annu. Rev. Genet. 33, 1–27 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gupta, P. Okay. et al. Hybrid wheat: previous, current and future. Theor. Appl. Genet. 132, 2463–2483 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Xiao, Z. et al. Overcoming cabbage crossing incompatibility by the event and software of self-compatibility-QTL-specific markers and genome-wide background evaluation. Entrance. Plant Sci. 10, 189 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, L. & Liu, Y.-G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65, 579–606 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peet, M. M. & Welles, G. in Tomatoes (ed. Heuvelink, E.) 257–304 (CABI, 2005).

  • Erenstein, O. & Kassie, G. T. Seeding japanese Africa’s maize revolution within the post-structural adjustment period: a assessment and comparative evaluation of the formal maize seed sector. Int. Meals Agribus. Handle. Rev. 21, 39–52 (2018).

    Article 

    Google Scholar
     

  • Crow, J. Anecdotal, historic and demanding commentaries on genetics. Genetics 148, 923–928 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Duvick, D. N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).

    Article 

    Google Scholar
     

  • Andorf, C. et al. Technological advances in maize breeding: previous, current and future. Theor. Appl. Genet. 132, 817–849 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Troyer, A. F. Adaptedness and heterosis in corn and mule hybrids. Crop Sci. 46, 528–543 (2006).

    Article 

    Google Scholar
     

  • Longin, C. F. H., Reif, J. C. & Würschum, T. Lengthy-term perspective of hybrid versus line breeding in wheat based mostly on quantitative genetic idea. Theor. Appl. Genet. 127, 1635–1641 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Jiang, Y., Schmidt, R. H., Zhao, Y. & Reif, J. C. A quantitative genetic framework highlights the function of epistatic results for grain-yield heterosis in bread wheat. Nat. Genet. 49, 1741–1746 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Voss-Fels, Okay. P. et al. Breeding improves wheat productiveness below contrasting agrochemical enter ranges. Nat. Vegetation 5, 706–714 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Boeven, P. H. G., Würschum, T., Rudloff, J., Ebmeyer, E. & Longin, C. F. H. Hybrid seed set in wheat is a fancy trait however might be improved not directly by choice for male floral traits. Euphytica 214, 110 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Boeven, P. H. G., Longin, C. F. H. & Würschum, T. A unified framework for hybrid breeding and the institution of heterotic teams in wheat. Theor. Appl. Genet. 129, 1231–1245 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Douches, D. S., Maas, D., Jastrzebski, Okay. & Chase, R. W. Evaluation of potato breeding progress within the USA over the past century. Crop Sci. 36, 1544–1552 (1996).

    Article 

    Google Scholar
     

  • Jansky, S. H. et al. Reinventing potato as a diploid inbred line-based crop. Crop Sci. 56, 1412–1422 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873–3883.e3812 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Su, Y. et al. Introgression of genes for resistance in opposition to Phytophthora infestans in diploid potato. Am. J. Potato Res. 97, 33–42 (2020).

    Article 

    Google Scholar
     

  • Hutten, R. C. B. Primary Features of Potato Breeding through the Diploid Stage (Wageningen College and Analysis, 1994).

  • Stockem, J., de Vries, M., van Nieuwenhuizen, E., Lindhout, P. & Struik, P. C. Contribution and stability of yield parts of diploid hybrid potato. Potato Res. https://doi.org/10.1007/s11540-019-09444-x (2020).

  • Steenhuijsen Piters, B. D. et al. World Scoping Examine on Fruits and Greens: Outcomes from Literature and Information Evaluation (Wageningen Financial Analysis, 2021).

  • Entry to Seeds Index (Entry to Seeds Basis, 2019); https://www.accesstoseeds.org/

  • Yuan, L. P. Hybrid rice in China. Chin. J. Rice Sci. 1, 8–18 (1986).


    Google Scholar
     

  • Cheng, S. H., Zhuang, J. Y., Fan, Y. Y., Du, J. H. & Cao, L. Y. Progress in analysis and improvement on hybrid rice: a super-domesticate in China. Ann. Bot. 100, 959–966 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Miedaner, T. & Laidig, F. in Advances in Plant Breeding Methods: Cereals (eds Al-Khayri, J. M. et al.) 343–372 (Springer Worldwide, 2019).

  • McGrath, J. M. & Panella, L. in Plant Breeding Evaluations (ed. Goldman, I.) 167–218 (Wiley, 2018).

  • Oliver, E. & Shoham, J. Evaluation of Gross sales and Profitability inside the Seed Sector (IHS Markit, 2019); https://cdn.ihsmarkit.com/www/pdf/0320/202001-Seedsectorsale-Analysis-LD-Unknown-Version001-pdf.pdf

  • Nielsen, R. L. Historic Corn Grain Yields within the U.S. (Purdue Univ., 2021); https://www.agry.purdue.edu/ext/corn/news/timeless/yieldtrends.html

  • Next Post

    Atlanta's 500 Most Highly effective Leaders in 2022: Actual Property

    Xmetrical: Antone Residence{Photograph} by Fredrik Bauer Architecture & Design | Commercial Contractors | Commercial Real Estate Brokers | Commercial Real Estate Sponsors| Residential Real Estate Brokers | Residential Real Estate Developers | Legends ARCHITECTURE & DESIGN   Lucy Aiken-JohnsonFounding Associateai3 As a founding accomplice of ai3 in 2004, Lucy Aiken-Johnson […]
    Atlanta’s 500 Most Highly effective Leaders in 2022: Actual Property