Labroo, M. R., Studer, A. J. & Rutkoski, J. E. Heterosis and hybrid crop breeding: a multidisciplinary assessment. Entrance. Genet. 12, 643761 (2021).
Mackay, I. J., Cockram, J., Howell, P. & Powell, W. Understanding the classics: the unifying ideas of transgressive segregation, inbreeding melancholy and heterosis and their central relevance for crop breeding. Plant Biotechnol. J. 19, 26–34 (2021).
Béné, C. et al. Understanding meals methods drivers: a important assessment of the literature. Glob. Meals Sec. 23, 149–159 (2019).
Clapp, J. Meals third edn (Polity, 2020).
Lammerts van Bueren, E. T., Struik, P. C., van Eekeren, N. & Nuijten, E. In direction of resilience by way of systems-based plant breeding: a assessment. Agron. Maintain. Dev. 38, 42 (2018).
Kantar, M. B. et al. The various‐confronted Janus of plant breeding. Vegetation Individuals Planet 1, 306–309 (2019).
Lammerts van Bueren, E. T. et al. The necessity to breed crop varieties appropriate for natural farming, utilizing wheat, tomato and broccoli as examples: a assessment. NJAS 58, 193–205 (2011).
Chahal, G. S. & Gosal, S. S. Ideas and Procedures of Plant Breeding: Biotechnological and Typical Approaches (Alpha Science Worldwide, 2002).
Brown, J. & Caligari, P. D. S. An Introduction to Plant Breeding (Blackwell, 2008).
Rijk, B., van Ittersum, M. & Withagen, J. Genetic progress in Dutch crop yields. Discipline Crops Res. 149, 262–268 (2013).
Rudolf-Pilih, Okay. et al. Proposal of a brand new hybrid breeding methodology based mostly on genotyping, inter-pollination, phenotyping and paternity testing of chosen elite F1 hybrids. Entrance. Plant Sci. 10, 1111 (2019).
Lindhout, P. et al. In direction of F1 hybrid seed potato breeding. Potato Res. 54, 301–312 (2011).
Bélanger, J. & Pilling, D. The State of the World’s Biodiversity for Meals and Agriculture (FAO, 2019).
Priyadarshan, P. M. Plant Breeding: Classical to Trendy (Springer, 2019).
World Meals and Agriculture Statistical Pocketbook 2019 (FAO, 2019).
Acquaah, G. Ideas of Plant Genetics and Breeding third edn (Wiley, 2020).
Sterck, L., Rombauts, S., Vandepoele, Okay., Rouze, P. & Vandepeer, Y. What number of genes are there in vegetation (…and why are they there)? Curr. Opin. Plant Biol. 10, 199–203 (2007).
Crouch, D. J. M. & Bodmer, W. F. Polygenic inheritance, GWAS, polygenic danger scores, and the seek for purposeful variants. Proc. Natl Acad. Sci. USA 117, 18924–18933 (2020).
Bernardo, R. Reinventing quantitative genetics for plant breeding: one thing previous, one thing new, one thing borrowed, one thing BLUE. Heredity 125, 375–385 (2020).
Zhao, Y. et al. Unlocking huge information doubled the accuracy in predicting the grain yield in hybrid wheat. Sci. Adv. 7, eabf9106 (2021).
Barrett, S. C. H. Mating methods in flowering vegetation: the outcrossing–selfing paradigm and past. Phil. Trans. R. Soc. Lond. B 358, 991–1004 (2003).
Charlesworth, D., Vekemans, X., Castric, V. & Glémin, S. Plant self‐incompatibility methods: a molecular evolutionary perspective. N. Phytol. 168, 61–69 (2005).
Whitehead, M. R., Lanfear, R., Mitchell, R. J. & Karron, J. D. Plant mating methods usually differ broadly amongst populations. Entrance. Ecol. Evol. 6, 38 (2018).
Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding melancholy in vegetation. I. Genetic fashions. Evolution 39, 24–40 (1985).
Porcher, E. & Lande, R. The evolution of self-fertilization and inbreeding melancholy below pollen discounting and pollen limitation: pollination biology and evolution of selfing. J. Evol. Biol. 18, 497–508 (2005).
Husband, B. C. & Schemske, D. W. Evolution of the magnitude and timing of inbreeding melancholy in vegetation. Evolution 50, 54–70 (1996).
Harlan, J. R. & Moist, J. M. J. Towards a rational classification of cultivated vegetation. TAXON 20, 509–517 (1971).
Palmer, R. G. & Hymowitz, T. in Reference Module in Meals Science B9780081005965002146 (Elsevier, 2016).
Tourrette, E., Falque, M. & Martin, O. C. Enhancing backcross packages by way of elevated recombination. Genet. Sel. Evol. 53, 25 (2021).
Brock, R. D. The function of induced mutations in plant enchancment. Radiat. Bot. 11, 181–196 (1971).
Ahloowalia, B. S., Maluszynski, M. & Nichterlein, Okay. World impression of mutation-derived varieties. Euphytica 135, 187–204 (2004).
Louwaars, N. Seeds of Confusion: The Impression of Insurance policies on Seed Methods (Wageningen College and Analysis, 2007).
Jamali, S. H., Cockram, J. & Hickey, L. T. Is plant selection registration conserving tempo with velocity breeding methods? Euphytica 216, 131 (2020).
De Jonge, B., Salazar, R. & Visser, B. How regulatory points surrounding new breeding applied sciences can impression smallholder farmer breeding: a case examine from the Philippines. Vegetation Individuals Planet 4, 96–105 (2022).
Almekinders, C. J. M., Hebinck, P., Marinus, W., Kiaka, R. D. & Waswa, W. W. Why farmers use so many alternative maize varieties in West Kenya. Outlook Agric. 50, 406–417 (2021).
Kaeppler, S. Heterosis: many genes, many mechanisms—finish the seek for an undiscovered unifying idea. ISRN Bot. 2012, 682824 (2012).
Virmani, S. S., Solar, Z. X., Mou, T. M., Ali, A. J. & Mao, C. X. Two-Line Hybrid Rice Breeding Guide (Worldwide Rice Analysis Institute, 2003).
Lindhout, P. et al. in Burleigh Dodds Collection in Agricultural Science: Reaching Sustainable Cultivation of Potatoes (ed. Wang-Pruski, G.) 99–122 (Burleigh Dodds Science, 2018).
Nienhuis, J. & Sills, G. in Reproductive Biology and Plant Breeding (eds Dattée, Y. et al.) 387–396 (Springer Berlin Heidelberg, 1992).
Singh, S. & Gupta, S. Okay. Formation of heterotic swimming pools and understanding relationship between molecular divergence and heterosis in pearl millet [Pennisetum glaucum (L.) R. Br.]. PLoS ONE 14, e0207463 (2019).
Allard, R. W. Historical past of plant inhabitants genetics. Annu. Rev. Genet. 33, 1–27 (1999).
Gupta, P. Okay. et al. Hybrid wheat: previous, current and future. Theor. Appl. Genet. 132, 2463–2483 (2019).
Xiao, Z. et al. Overcoming cabbage crossing incompatibility by the event and software of self-compatibility-QTL-specific markers and genome-wide background evaluation. Entrance. Plant Sci. 10, 189 (2019).
Chen, L. & Liu, Y.-G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 65, 579–606 (2014).
Peet, M. M. & Welles, G. in Tomatoes (ed. Heuvelink, E.) 257–304 (CABI, 2005).
Erenstein, O. & Kassie, G. T. Seeding japanese Africa’s maize revolution within the post-structural adjustment period: a assessment and comparative evaluation of the formal maize seed sector. Int. Meals Agribus. Handle. Rev. 21, 39–52 (2018).
Crow, J. Anecdotal, historic and demanding commentaries on genetics. Genetics 148, 923–928 (1998).
Duvick, D. N. The contribution of breeding to yield advances in maize (Zea mays L.). Adv. Agron. 86, 83–145 (2005).
Andorf, C. et al. Technological advances in maize breeding: previous, current and future. Theor. Appl. Genet. 132, 817–849 (2019).
Troyer, A. F. Adaptedness and heterosis in corn and mule hybrids. Crop Sci. 46, 528–543 (2006).
Longin, C. F. H., Reif, J. C. & Würschum, T. Lengthy-term perspective of hybrid versus line breeding in wheat based mostly on quantitative genetic idea. Theor. Appl. Genet. 127, 1635–1641 (2014).
Jiang, Y., Schmidt, R. H., Zhao, Y. & Reif, J. C. A quantitative genetic framework highlights the function of epistatic results for grain-yield heterosis in bread wheat. Nat. Genet. 49, 1741–1746 (2017).
Voss-Fels, Okay. P. et al. Breeding improves wheat productiveness below contrasting agrochemical enter ranges. Nat. Vegetation 5, 706–714 (2019).
Boeven, P. H. G., Würschum, T., Rudloff, J., Ebmeyer, E. & Longin, C. F. H. Hybrid seed set in wheat is a fancy trait however might be improved not directly by choice for male floral traits. Euphytica 214, 110 (2018).
Boeven, P. H. G., Longin, C. F. H. & Würschum, T. A unified framework for hybrid breeding and the institution of heterotic teams in wheat. Theor. Appl. Genet. 129, 1231–1245 (2016).
Douches, D. S., Maas, D., Jastrzebski, Okay. & Chase, R. W. Evaluation of potato breeding progress within the USA over the past century. Crop Sci. 36, 1544–1552 (1996).
Jansky, S. H. et al. Reinventing potato as a diploid inbred line-based crop. Crop Sci. 56, 1412–1422 (2016).
Zhang, C. et al. Genome design of hybrid potato. Cell 184, 3873–3883.e3812 (2021).
Su, Y. et al. Introgression of genes for resistance in opposition to Phytophthora infestans in diploid potato. Am. J. Potato Res. 97, 33–42 (2020).
Hutten, R. C. B. Primary Features of Potato Breeding through the Diploid Stage (Wageningen College and Analysis, 1994).
Stockem, J., de Vries, M., van Nieuwenhuizen, E., Lindhout, P. & Struik, P. C. Contribution and stability of yield parts of diploid hybrid potato. Potato Res. https://doi.org/10.1007/s11540-019-09444-x (2020).
Steenhuijsen Piters, B. D. et al. World Scoping Examine on Fruits and Greens: Outcomes from Literature and Information Evaluation (Wageningen Financial Analysis, 2021).
Entry to Seeds Index (Entry to Seeds Basis, 2019); https://www.accesstoseeds.org/
Yuan, L. P. Hybrid rice in China. Chin. J. Rice Sci. 1, 8–18 (1986).
Cheng, S. H., Zhuang, J. Y., Fan, Y. Y., Du, J. H. & Cao, L. Y. Progress in analysis and improvement on hybrid rice: a super-domesticate in China. Ann. Bot. 100, 959–966 (2007).
Miedaner, T. & Laidig, F. in Advances in Plant Breeding Methods: Cereals (eds Al-Khayri, J. M. et al.) 343–372 (Springer Worldwide, 2019).
McGrath, J. M. & Panella, L. in Plant Breeding Evaluations (ed. Goldman, I.) 167–218 (Wiley, 2018).
Oliver, E. & Shoham, J. Evaluation of Gross sales and Profitability inside the Seed Sector (IHS Markit, 2019); https://cdn.ihsmarkit.com/www/pdf/0320/202001-Seedsectorsale-Analysis-LD-Unknown-Version001-pdf.pdf
Nielsen, R. L. Historic Corn Grain Yields within the U.S. (Purdue Univ., 2021); https://www.agry.purdue.edu/ext/corn/news/timeless/yieldtrends.html